We should be going for … radically new ideas.

WIRED: The recent boom of interest and investment in AI and machine learning means there’s more funding for research than ever. Does the rapid growth of the field also bring new challenges?

GH: One big challenge the community faces is that if you want to get a paper published in machine learning now it’s got to have a table in it, with all these different data sets across the top, and all these different methods along the side, and your method has to look like the best one. If it doesn’t look like that, it’s hard to get published. I don’t think that’s encouraging people to think about radically new ideas.

Now if you send in a paper that has a radically new idea, there’s no chance in hell it will get accepted, because it’s going to get some junior reviewer who doesn’t understand it. Or it’s going to get a senior reviewer who’s trying to review too many papers and doesn’t understand it first time round and assumes it must be nonsense.

Anything that makes the brain hurt is not going to get accepted. And I think that’s really bad.

What we should be going for, particularly in the basic science conferences, is radically new ideas. Because we know a radically new idea in the long run is going to be much more influential than a tiny improvement. That’s I think the main downside of the fact that we’ve got this inversion now, where you’ve got a few senior guys and a gazillion young guys.

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

You cannot be a celebrant of originality if you are not ALSO working to liberate the ideas of those typically underseen

Adam Galinsky of Columbia University has researched that “power and status act as self-reinforcing loops”, allowing those who have power and status to have their ideas heard and those without power to be ignored and silenced.

It’s not that the original idea is weighed and deemed unworthy but that the person bringing that new and unusual idea is deemed unworthy of being listened to.

When you are hiring to bring in new ideas or designing hackathons within your firm to unlock innovation levels within your firm, know this: you cannot do innovation and access original ideas without addressing the deep and pervasive role of bias.

Either you are doing something to explicitly dismantle the structural ways in which we limit who is allowed to have ideas, to unlock their capacity… or you are allowing the same old people to keep doing the same old things, perpetuating the status quo.

By your actions, you’re picking a side.

Source: Nilofer Merchant



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

My main concern is that the AGI fears actually distract us from the real issues of bias …

… messing with elections, and the like.
– Richard Socher, Saleforce’s chief data scientist

Look at recommender engines — when you click a conspiracy video on a platform like YouTube, it optimizes more clicks and advertiser views and shows you crazier and crazier conspiracy theories to keep you on the platform.

And then you basically have people who become very radicalized, because anybody can put up this crazy stuff on YouTube, right? And so that is like a real issue.

Those are the things we should be talking about a lot more, because they can mess up society and make the world less stable and less democratic.

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

A New AI “Journalist” Is Rewriting the News to Remove Bias

First, the site’s artificial intelligence (AI) chooses a story based on what’s popular on the internet right now. Once it picks a topic, it looks at more than a thousand news sources to gather details. Left-leaning sites, right-leaning sites – the AI looks at them all.

Then, the AI writes its own “impartial” version of the story based on what it finds (sometimes in as little as 60 seconds). This take on the news contains the most basic facts, with the AI striving to remove any potential bias. The AI also takes into account the “trustworthiness” of each source, something Knowhere’s co-founders preemptively determined. This ensures a site with a stellar reputation for accuracy isn’t overshadowed by one that plays a little fast and loose with the facts.

For some of the more political stories, the AI produces two additional versions labeled “Left” and “Right.” Those skew pretty much exactly how you’d expect from their headlines:

  • Impartial: “US to add citizenship question to 2020 census”
  • Left: “California sues Trump administration over census citizenship question”
  • Right: “Liberals object to inclusion of citizenship question on 2020 census”


Some controversial but not necessarily political stories receive “Positive” and “Negative” spins:

  • Impartial: “Facebook scans things you send on messenger, Mark Zuckerberg admits”
  • Positive: “Facebook reveals that it scans Messenger for inappropriate content”
  • Negative: “Facebook admits to spying on Messenger, ‘scanning’ private images and links”

Even the images used with the stories occasionally reflect the content’s bias. The “Positive” Facebook story features CEO Mark Zuckerberg grinning, while the “Negative” one has him looking like his dog just died.

So, impartial stories written by AI. Pretty neat? Sure. But society changing? We’ll probably need more than a clever algorithm for that.

Source: Futurism

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

A Hippocratic Oath for artificial intelligence practitioners

                                                                                         Getty Images

In the forward to Microsoft’s recent book, The Future Computed, executives Brad Smith  and Harry Shum  proposed that Artificial Intelligence (AI) practitioners highlight their ethical commitments by taking an oath analogous to the Hippocratic Oath sworn by doctors for generations.

In the past, much power and responsibility over life and death was concentrated in the hands of doctors.

Now, this ethical burden is increasingly shared by the builders of AI software.

Future AI advances in medicine, transportation, manufacturing, robotics, simulation, augmented reality, virtual reality, military applications, dictate that AI be developed from a higher moral ground today.

In response, I (Oren Etzioni) edited the modern version of the medical oath to address the key ethical challenges that AI researchers and engineers face …

The oath is as follows:

I swear to fulfill, to the best of my ability and judgment, this covenant:

I will respect the hard-won scientific gains of those scientists and engineers in whose steps I walk, and gladly share such knowledge as is mine with those who are to follow.

I will apply, for the benefit of the humanity, all measures required, avoiding those twin traps of over-optimism and uniformed pessimism.

I will remember that there is an art to AI as well as science, and that human concerns outweigh technological ones.

Most especially must I tread with care in matters of life and death. If it is given me to save a life using AI, all thanks. But it may also be within AI’s power to take a life; this awesome responsibility must be faced with great humbleness and awareness of my own frailty and the limitations of AI. Above all, I must not play at God nor let my technology do so.

I will respect the privacy of humans for their personal data are not disclosed to AI systems so that the world may know.

I will consider the impact of my work on fairness both in perpetuating historical biases, which is caused by the blind extrapolation from past data to future predictions, and in creating new conditions that increase economic or other inequality.

My AI will prevent harm whenever it can, for prevention is preferable to cure.

My AI will seek to collaborate with people for the greater good, rather than usurp the human role and supplant them.

I will remember that I am not encountering dry data, mere zeros and ones, but human beings, whose interactions with my AI software may affect the person’s freedom, family, or economic stability. My responsibility includes these related problems.

I will remember that I remain a member of society, with special obligations to all my fellow human beings.

Source: TechCrunch – Oren Etzioni

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

How to Make A.I. That’s Good for People

Credit Elisa Macellari

For a field that was not well known outside of academia a decade ago, artificial intelligence has grown dizzyingly fast.

Tech companies from Silicon Valley to Beijing are betting everything on it, venture capitalists are pouring billions into research and development, and start-ups are being created on what seems like a daily basis. If our era is the next Industrial Revolution, as many claim, A.I. is surely one of its driving forces.

I worry, however, that enthusiasm for A.I. is preventing us from reckoning with its looming effects on society. Despite its name, there is nothing “artificial” about this technology — it is made by humans, intended to behave like humans and affects humans. So if we want it to play a positive role in tomorrow’s world, it must be guided by human concerns.

I call this approach “human-centered A.I.” It consists of three goals that can help responsibly guide the development of intelligent machines.

  • First, A.I. needs to reflect more of the depth that characterizes our own intelligence.
  • the second goal of human-centered A.I.: enhancing us, not replacing us.
  • the third goal of human-centered A.I.: ensuring that the development of this technology is guided, at each step, by concern for its effect on humans.

No technology is more reflective of its creators than A.I. It has been said that there are no “machine” values at all, in fact; machine values are human values.

A human-centered approach to A.I. means these machines don’t have to be our competitors, but partners in securing our well-being. However autonomous our technology becomes, its impact on the world — for better or worse — will always be our responsibility.

Fei-Fei Li is a professor of computer science at Stanford, where she directs the Stanford Artificial Intelligence Lab, and the chief scientist for A.I. research at Google Cloud.

Source: NYT

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Twitter needs and asks for help – study finds that the truth simply cannot compete with hoax and rumor

Twitter wants experts to help it learn to be a less toxic place online.

Twitter launched a new initiative Thursday to find out exactly what it means to be a healthy social network in 2018.

CEO Jack Dorsey tweets acknowledging the problem

The company, which has been plagued by a number of election-meddling, harassment, bot, and scam-related scandals since the 2016 presidential election, announced that it was looking to partner with outside experts to help “identify how we measure the health of Twitter.”

The company said it was looking to find new ways to fight abuse and spam, and to encourage “healthy” debates and conversations.

Twitter is now inviting experts to help define “what health means for Twitter” by submitting proposals for studies.

Source: Wired  

Huge MIT Study of ‘Fake News’: Falsehoods Win on Twitter

Krista Kennell / Stone / Catwalker / Shutterstock / The Atlantic

Falsehoods almost always beat out the truth on Twitter, penetrating further, faster, and deeper into the social network than accurate information.

The massive new study analyzes every major contested news story in English across the span of Twitter’s existence—some 126,000 stories, tweeted by 3 million users, over more than 10 years—and finds

that the truth simply cannot compete with hoax and rumor.

By every common metric, falsehood consistently dominates the truth on Twitter, the study finds: Fake news and false rumors reach more people, penetrate deeper into the social network, and spread much faster than accurate stories.

their work has implications for Facebook, YouTube, and every major social network. Any platform that regularly amplifies engaging or provocative content runs the risk of amplifying fake news along with it.

Twitter users seem almost to prefer sharing falsehoods. Even when the researchers controlled for every difference between the accounts originating rumors—like whether that person had more followers or was verified—falsehoods were still 70 percent more likely to get retweeted than accurate news.

In short, social media seems to systematically amplify falsehood at the expense of the truth, and no one—neither experts nor politicians nor tech companies—knows how to reverse that trend.

It is a dangerous moment for any system of government premised on a common public reality.

Source: The Atlantic

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

The tech bias: why Silicon Valley needs social theory

Photo by Ramin Talaie/Corbis/Getty Image

In the summer of 2017, a now infamous memo came to light. Written by James Damore, then an engineer at Google, it claimed that the under-representation of women in tech was partly caused by inherent biological differences between men and women.

That Google memo is an extreme example of an imbalance in how different ways of knowing are valued.

Silicon Valley tech companies draw on innovative technical theory but have yet to really incorporate advances in social theory.

Social theorists in fields such as sociology, geography, and science and technology studies have shown how race, gender and class biases inform technical design.

So there’s irony in the fact that employees hold sexist and racist attitudes, yet ‘we are supposed to believe that these same employees are developing “neutral” or “objective” decision-making tools’, as the communications scholar Safiya Umoja Noble at the University of Southern California argues in her book Algorithms of Oppression (2018).

If tech companies are serious about building a better society, and aren’t just paying lip service to justice for their own gain, they must attend more closely to social theory.

If social insights were easy, and if practice followed readily from understanding, then racism, poverty and other debilitating systems of power and inequality would be a thing of the past.

New insights about society are as challenging to produce as the most rarified scientific theorems – and addressing pressing contemporary problems requires as many kinds of knowers and ways of knowing as possible.

Source: aeon



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

What can AI learn from non-Western philosophies?

Belgian Ian Frejean, 11, walks with “Zora” the robot, a humanoid robot designed to entertain patients and to support care providers, at AZ Damiaan hospital in Ostend, Belgium

As autonomous and intelligent systems become more and more ubiquitous and sophisticated, developers and users face an important question:

How do we ensure that when these technologies are in a position to make a decision, they make the right decision — the ethically right decision?

It’s a complicated question. And there’s not one single right answer. 

But there is one thing that people who work in the budding field of AI ethics seem to agree on.

“I think there is a domination of Western philosophy, so to speak, in AI ethics,” said Dr. Pak-Hang Wong, who studies Philosophy of Technology and Ethics at the University of Hamburg, in Germany. “By that I mean, when we look at AI ethics, most likely they are appealing to values … in the Western philosophical traditions, such as value of freedom, autonomy and so on.”

Wong is among a group of researchers trying to widen that scope, by looking at how non-Western value systems — including Confucianism, Buddhism and Ubuntu — can influence how autonomous and intelligent designs are developed and how they operate.

“We’re providing standards as a starting place. And then from there, it may be a matter of each tradition, each culture, different governments, establishing their own creation based on the standards that we are providing.” 
Jared Bielby, who heads the Classical Ethics committee

Source: PRI



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

What’s Bigger Than Fire and Electricity? Artificial Intelligence – Google

Google CEO Sundar Pichai believes artificial intelligence could have “more profound” implications for humanity than electricity or fire, according to recent comments.

Pichai also warned that the development of artificial intelligence could pose as much risk as that of fire if its potential is not harnessed correctly.

“AI is one of the most important things humanity is working on” Pichai said in an interview with MSNBC and Recode

“My point is AI is really important, but we have to be concerned about it,” Pichai said. “It’s fair to be worried about it—I wouldn’t say we’re just being optimistic about it— we want to be thoughtful about it. AI holds the potential for some of the biggest advances we’re going to see.”

Source: Newsweek

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

In 2018 AI will gain a moral compass

The ethics of artificial intelligence must be central to its development

Janne Iivonen

Humanity faces a wide range of challenges that are characterised by extreme complexity

… the successful integration of AI technologies into our social and economic world creates its own challenges. They could either help overcome economic inequality or they could worsen it if the benefits are not distributed widely.

They could shine a light on damaging human biases and help society address them, or entrench patterns of discrimination and perpetuate them. Getting things right requires serious research into the social consequences of AI and the creation of partnerships to ensure it works for the public good.

This is why I predict the study of the ethics, safety and societal impact of AI is going to become one of the most pressing areas of enquiry over the coming year.

It won’t be easy: the technology sector often falls into reductionist ways of thinking, replacing complex value judgments with a focus on simple metrics that can be tracked and optimised over time.

There has already been valuable work done in this area. For example, there is an emerging consensus that it is the responsibility of those developing new technologies to help address the effects of inequality, injustice and bias. In 2018, we’re going to see many more groups start to address these issues.

Of course, it’s far simpler to count likes than to understand what it actually means to be liked and the effect this has on confidence or self-esteem.

Progress in this area also requires the creation of new mechanisms for decision-making and voicing that include the public directly. This would be a radical change for a sector that has often preferred to resolve problems unilaterally – or leave others to deal with them.

Mustafa Suleyman co-founder of DeepMind Technologies

We need to do the hard, practical and messy work of finding out what ethical AI really means. If we manage to get AI to work for people and the planet, then the effects could be transformational. Right now, there’s everything to play for.

Source: Wired 

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

DeepMind’s new AI ethics unit

DeepMind made this announcement Oct 2017

Google-owned DeepMind has announced the formation of a major new AI research unit comprised of full-time staff and external advisors

DrAfter123/iStock

As we hand over more of our lives to artificial intelligence systems, keeping a firm grip on their ethical and societal impact is crucial.

DeepMind Ethics & Society (DMES), a unit comprised of both full-time DeepMind employees and external fellows, is the company’s latest attempt to scrutinise the societal impacts of the technologies it creates.

DMES will work alongside technologists within DeepMind and fund external research based on six areas: privacy transparency and fairness; economic impacts; governance and accountability; managing AI risk; AI morality and values; and how AI can address the world’s challenges.

Its aim, according to DeepMind, is twofold: to help technologists understand the ethical implications of their work and help society decide how AI can be beneficial.

“We want these systems in production to be our highest collective selves. We want them to be most respectful of human rights, we want them to be most respectful of all the equality and civil rights laws that have been so valiantly fought for over the last sixty years.” [Mustafa Suleyman]

Source: Wired

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

wait … am I being manipulated on this topic by an Amazon-owned AI engine?

Image Credit: chombosan/Shutterstock

The other night, my nine-year-old daughter (who is, of course, the most tech-savvy person in the house), introduced me to a new Amazon Alexa skill.

Alexa, start a conversation,” she said.

We were immediately drawn into an experience with new bot, or, as the technologists would say, “conversational user interface” (CUI).  It was, we were told, the recent winner in an Amazon AI competition from the University of Washington.

At first, the experience was fun, but when we chose to explore a technology topic, the bot responded, “have you heard of Net Neutrality?What we experienced thereafter was slightly discomforting.

The bot seemingly innocuously cited a number of articles that she “had read on the web” about the FCC, Ajit Pai, and the issue of net neutrality. But here’s the thing: All four articles she recommended had a distinct and clear anti-Ajit Pai bias.

Now, the topic of Net Neutrality is a heated one and many smart people make valid points on both sides, including Fred Wilson and Ben Thompson. That is how it should be.

But the experience of the Alexa CUI should give you pause, as it did me.

To someone with limited familiarity with the topic of net neutrality, the voice seemed soothing and the information unbiased. But if you have a familiarity with the topic, you might start to wonder, “wait … am I being manipulated on this topic by an Amazon-owned AI engine to help the company achieve its own policy objectives?”

The experience highlights some of the risks of the AI-powered future into which we are hurtling at warp speed.

If you are going to trust your decision-making to a centralized AI source, you need to have 100 percent confidence in:

  • The integrity and security of the data (are the inputs accurate and reliable, and can they be manipulated or stolen?)
  • The machine learning algorithms that inform the AI (are they prone to excessive error or bias, and can they be inspected?)
  • The AI’s interface (does it reliably represent the output of the AI and effectively capture new data?)

In a centralized, closed model of AI, you are asked to implicitly trust in each layer without knowing what is going on behind the curtains.

Welcome to the world of Blockchain+AI.

3 blockchain projects tackling decentralized data and AI (click here to read the blockchain projects)

Source: Venture Beat



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

IEEE launches ethical design guide for AI developers

As autonomous and intelligent systems become more pervasive, it is essential the designers and developers behind them stop to consider the ethical considerations of what they are unleashing.

That’s the view of the Institute of Electrical and Electronics Engineers (IEEE) which this week released for feedback its second Ethically Aligned Design document in an attempt

to ensure such systems “remain human-centric”.

“These systems have to behave in a way that is beneficial to people beyond reaching functional goals and addressing technical problems. This will allow for an elevated level of trust between people and technology that is needed for its fruitful, pervasive use in our daily lives,” the document states.

“Defining what exactly ‘right’ and ‘good’ are in a digital future is a question of great complexity that places us at the intersection of technology and ethics,” 

“Throwing our hands up in air crying ‘it’s too hard’ while we sit back and watch technology careen us forward into a future that happens to us, rather than one we create, is hardly a viable option.

“This publication is a truly game-changing and promising first step in a direction – which has often felt long in coming – toward breaking the protective wall of specialisation that has allowed technologists to disassociate from the societal impacts of their technologies.”

“It will demand that future tech leaders begin to take responsibility for and think deeply about the non-technical impact on disempowered groups, on privacy and justice, on physical and mental health, right down to unpacking hidden biases and moral implications. It represents a positive step toward ensuring the technology we build as humans genuinely benefits us and our planet,” [University of Sydney software engineering Professor Rafael Calvo.]

“We believe explicitly aligning technology with ethical values will help advance innovation with these new tools while diminishing fear in the process” the IEEE said.

Source: Computer World



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Trouble with #AI Bias – Kate Crawford

This article attempts to bring our readers to Kate’s brilliant Keynote speech at NIPS 2017. It talks about different forms of bias in Machine Learning systems and the ways to tackle such problems.

The rise of Machine Learning is every bit as far reaching as the rise of computing itself.

A vast new ecosystem of techniques and infrastructure are emerging in the field of machine learning and we are just beginning to learn their full capabilities. But with the exciting things that people can do, there are some really concerning problems arising.

Forms of bias, stereotyping and unfair determination are being found in machine vision systems, object recognition models, and in natural language processing and word embeddings. High profile news stories about bias have been on the rise, from women being less likely to be shown high paying jobs to gender bias and object recognition datasets like MS COCO, to racial disparities in education AI systems.

What is bias?

Bias is a skew that produces a type of harm.

Where does bias come from?

Commonly from Training data. It can be incomplete, biased or otherwise skewed. It can draw from non-representative samples that are wholly defined before use. Sometimes it is not obvious because it was constructed in a non-transparent way. In addition to human labeling, other ways that human biases and cultural assumptions can creep in ending up in exclusion or overrepresentation of subpopulation. Case in point: stop-and-frisk program data used as training data by an ML system.  This dataset was biased due to systemic racial discrimination in policing.

Harms of allocation

Majority of the literature understand bias as harms of allocation. Allocative harm is when a system allocates or withholds certain groups, an opportunity or resource. It is an economically oriented view primarily. Eg: who gets a mortgage, loan etc.

Allocation is immediate, it is a time-bound moment of decision making. It is readily quantifiable. In other words, it raises questions of fairness and justice in discrete and specific transactions.

Harms of representation

It gets tricky when it comes to systems that represent society but don’t allocate resources. These are representational harms. When systems reinforce the subordination of certain groups along the lines of identity like race, class, gender etc.

It is a long-term process that affects attitudes and beliefs. It is harder to formalize and track. It is a diffused depiction of humans and society. It is at the root of all of the other forms of allocative harm.

What can we do to tackle these problems?

  • Start working on fairness forensics
    • Test our systems: eg: build pre-release trials to see how a system is working across different populations
    • How do we track the life cycle of a training dataset to know who built it and what the demographics skews might be in that dataset
  • Start taking interdisciplinarity seriously
    • Working with people who are not in our field but have deep expertise in other areas Eg: FATE (Fairness Accountability Transparency Ethics) group at Microsoft Research
    • Build spaces for collaboration like the AI now institute.
  • Think harder on the ethics of classification

The ultimate question for fairness in machine learning is this.

Who is going to benefit from the system we are building? And who might be harmed?

Source: Datahub

Kate Crawford is a Principal Researcher at Microsoft Research and a Distinguished Research Professor at New York University. She has spent the last decade studying the social implications of data systems, machine learning, and artificial intelligence. Her recent publications address data bias and fairness, and social impacts of artificial intelligence among others.



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Are there some things we just shouldn’t build? #AI

The prestigious Neural Information Processing Systems conference have a new topic on their agenda. Alongside the usual … concern about AI’s power.

Kate Crawford … urged attendees to start considering, and finding ways to mitigate, accidental or intentional harms caused by their creations. “

“Amongst the very real excitement about what we can do there are also some really concerning problems arising”

“In domains like medicine we can’t have these models just be a black box where something goes in and you get something out but don’t know why,” says Maithra Raghu, a machine-learning researcher at Google. On Monday, she presented open-source software developed with colleagues that can reveal what a machine-learning program is paying attention to in data. It may ultimately allow a doctor to see what part of a scan or patient history led an AI assistant to make a particular diagnosis.

“If you have a diversity of perspectives and background you might be more likely to check for bias against different groups” Hanna Wallach  a researcher at Microsoft

Others in Long Beach hope to make the people building AI better reflect humanity. Like computer science as a whole, machine learning skews towards the white, male, and western. A parallel technical conference called Women in Machine Learning has run alongside NIPS for a decade. This Friday sees the first Black in AI workshop, intended to create a dedicated space for people of color in the field to present their work.

Towards the end of her talk Tuesday, Crawford suggested civil disobedience could shape the uses of AI. She talked of French engineer Rene Carmille, who sabotaged tabulating machines used by the Nazis to track French Jews. And she told today’s AI engineers to consider the lines they don’t want their technology to cross. “Are there some things we just shouldn’t build?” she asked.

Source: Wired



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Researchers Combat Gender and Racial Bias in Artificial Intelligence

[Timnit] Gebru, 34, joined a Microsoft Corp. team called FATE—for Fairness, Accountability, Transparency and Ethics in AI. The program was set up three years ago to ferret out biases that creep into AI data and can skew results.

“I started to realize that I have to start thinking about things like bias. Even my own Phd work suffers from whatever issues you’d have with dataset bias.”

Companies, government agencies and hospitals are increasingly turning to machine learning, image recognition and other AI tools to help predict everything from the credit worthiness of a loan applicant to the preferred treatment for a person suffering from cancer. The tools have big blind spots that particularly effect women and minorities. 

“The worry is if we don’t get this right, we could be making wrong decisions that have critical consequences to someone’s life, health or financial stability,” says Jeannette Wing, director of Columbia University’s Data Sciences Institute.

AI also has a disconcertingly human habit of amplifying stereotypes. Phd students at the University of Virginia and University of Washington examined a public dataset of photos and found that the images of people cooking were 33 percent more likely to picture women than men. When they ran the images through an AI model, the algorithms said women were 68 percent more likely to appear in the cooking photos.

Researchers say it will probably take years to solve the bias problem.

The good news is that some of the smartest people in the world have turned their brainpower on the problem. “The field really has woken up and you are seeing some of the best computer scientists, often in concert with social scientists, writing great papers on it,” says University of Washington computer science professor Dan Weld. “There’s been a real call to arms.”

Source: Bloomberg



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Artificial intelligence doesn’t have to be evil. We just have to teach it to be good

Training an AI platform on social media data, with the intent to reproduce a “human” experience, is fraught with risk. You could liken it to raising a baby on a steady diet of Fox News or CNN, with no input from its parents or social institutions. In either case, you might be breeding a monster.

Ultimately, social data — alone — represents neither who we actually are nor who we should be. Deeper still, as useful as the social graph can be in providing a training set for AI, what’s missing is a sense of ethics or a moral framework to evaluate all this data. From the spectrum of human experience shared on Twitter, Facebook and other networks, which behaviors should be modeled and which should be avoided? Which actions are right and which are wrong? What’s good … and what’s evil?

Here’s where science comes up short. The answers can’t be gleaned from any social data set. The best analytical tools won’t surface them, no matter how large the sample size.

But they just might be found in the Bible. And the Koran, the Torah, the Bhagavad Gita and the Buddhist Sutras. They’re in the work of Aristotle, Plato, Confucius, Descartes and other philosophers both ancient and modern.

AI, to be effective, needs an ethical underpinning. Data alone isn’t enough. AI needs religion — a code that doesn’t change based on context or training set. 

In place of parents and priests, responsibility for this ethical education will increasingly rest on frontline developers and scientists.

As emphasized by leading AI researcher Will Bridewell, it’s critical that future developers are “aware of the ethical status of their work and understand the social implications of what they develop.” He goes so far as to advocate study in Aristotle’s ethics and Buddhist ethics so they can “better track intuitions about moral and ethical behavior.”

On a deeper level, responsibility rests with the organizations that employ these developers, the industries they’re part of, the governments that regulate those industries and — in the end — us.

Source: Recode Ryan Holmes is the founder and CEO of Hootsuite



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Artificial Intelligence researchers are “basically writing policy in code”

A discussion between OpenAI Director Shivon Zilis and AI Fund Director of Ethics and Governance Tim Hwang, and both shared perspective on AI’s progress, its public perception, and how we can help ensure its responsible development going forward.

Hwang brought up the fact that artificial intelligence researchers are, in some ways, “basically writing policy in code” because of how influential the particular perspectives or biases inherent in these systems will be, and suggested that researchers could actually consciously set new cultural norms via their work.

Zilis added that the total number of people setting the tone for incredibly intelligent AI is probably “in the low thousands.”

She added that this means we likely need more crossover discussion between this community and those making policy decisions, and Hwang added that currently, there’s

“no good way for the public at large to signal” what moral choices should be made around the direction of AI development.

Zilis concluded that she has three guiding principles in terms of how she thinks about the future of responsible artificial intelligence development:

  • First, the tech’s coming no matter what, so we need to figure out how to bend its arc with intent.
  • Second, how do we get more people involved in the conversation?
  • And finally, we need to do our best to front load the regulation and public discussion needed on the issue, since ultimately, it’s going to be a very powerful technology.

Source: TechCrunch

 



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

The idea that you had no idea any of this was happening strains my credibility

From left: Twitter’s acting general counsel Sean Edgett, Facebook’s general counsel Colin Stretch and Google’s senior vice president and general counsel Kent Walker, testify before the House Intelligence Committee on Wednesday, Nov. 1, 2017. Manuel Balce Ceneta/AP

Members of Congress confessed how difficult it was for them to even wrap their minds around how today’s Internet works — and can be abused. And for others, the hearings finally drove home the magnitude of the Big Tech platforms.

Sen. John Kennedy, R-La., marveled on Tuesday when Facebook said it could track the source of funding for all 5 million of its monthly advertisers.

“I think you do enormous good, but your power scares me,” he said.

There appears to be no quick patch for the malware afflicting America’s political life.

Over the course of three congressional hearings Tuesday and Wednesday, lawmakers fulminated, Big Tech witnesses were chastened but no decisive action appears to be in store to stop a foreign power from harnessing digital platforms to try to shape the information environment inside the United States.

Legislation offered in the Senate — assuming it passed, months or more from now — would change the calculus slightly: requiring more disclosure and transparency for political ads on Facebook and Twitter and other social platforms.

Even if it became law, however, it would not stop such ads from being sold, nor heal the deep political divisions exploited last year by foreign influence-mongers. The legislation also couldn’t stop a foreign power from using all the other weapons in its arsenal against the U.S., including cyberattacks, the deployment of human spies and others.

“Candidly, your companies know more about Americans, in many ways, than the United States government does. The idea that you had no idea any of this was happening strains my credibility,”  Senate Intelligence Committee Vice Chairman Mark Warner, D.-Va.

The companies also made clear they condemn the uses of their services they’ve discovered, which they said violate their policies in many cases.

They also talked more about the scale of the Russian digital operation they’ve uncovered up to this point — which is eye-watering: Facebook general counsel Colin Stretch acknowledged that as many as 150 million Americans may have seen posts or other content linked to Russia’s influence campaign in the 2016 cycle

“There is one thing I’m certain of, and it’s this: Given the complexity of what we have seen, if anyone tells you they have figured it out, they are kidding ourselves. And we can’t afford to kid ourselves about what happened last year — and continues to happen today.” Senate Intelligence Committee Chairman Richard Burr, R-N.C.

Source: NPR


FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Does Even Mark Zuckerberg Know What Facebook Is?

In a statement broadcast live on Facebook on September 21 and subsequently posted to his profile page, Zuckerberg pledged to increase the resources of Facebook’s security and election-integrity teams and to work “proactively to strengthen the democratic process.”

It was an admirable commitment. But reading through it, I kept getting stuck on one line: “We have been working to ensure the integrity of the German elections this weekend,” Zuckerberg writes. It’s a comforting sentence, a statement that shows Zuckerberg and Facebook are eager to restore trust in their system.

But … it’s not the kind of language we expect from media organizations, even the largest ones. It’s the language of governments, or political parties, or NGOs. A private company, working unilaterally to ensure election integrity in a country it’s not even based in?

Facebook has grown so big, and become so totalizing, that we can’t really grasp it all at once.

Like a four-dimensional object, we catch slices of it when it passes through the three-dimensional world we recognize. In one context, it looks and acts like a television broadcaster, but in this other context, an NGO. In a recent essay for the London Review of Books, John Lanchester argued that for all its rhetoric about connecting the world, the company is ultimately built to extract data from users to sell to advertisers. This may be true, but Facebook’s business model tells us only so much about how the network shapes the world.

Between March 23, 2015, when Ted Cruz announced his candidacy, and November 2016, 128 million people in America created nearly 10 billion Facebook posts, shares, likes, and comments about the election. (For scale, 137 million people voted last year.)

In February 2016, the media theorist Clay Shirky wrote about Facebook’s effect: “Reaching and persuading even a fraction of the electorate used to be so daunting that only two national orgs” — the two major national political parties — “could do it. Now dozens can.”

It used to be if you wanted to reach hundreds of millions of voters on the right, you needed to go through the GOP Establishment. But in 2016, the number of registered Republicans was a fraction of the number of daily American Facebook users, and the cost of reaching them directly was negligible.

Tim Wu, the Columbia Law School professor

“Facebook has the same kind of attentional power [as TV networks in the 1950s], but there is not a sense of responsibility,” he said. “No constraints. No regulation. No oversight. Nothing. A bunch of algorithms, basically, designed to give people what they want to hear.”

It tends to get forgotten, but Facebook briefly ran itself in part as a democracy: Between 2009 and 2012, users were given the opportunity to vote on changes to the site’s policy. But voter participation was minuscule, and Facebook felt the scheme “incentivized the quantity of comments over their quality.” In December 2012, that mechanism was abandoned “in favor of a system that leads to more meaningful feedback and engagement.”

Facebook had grown too big, and its users too complacent, for democracy.

Source: NY Magazine



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Put Humans at the Center of AI

As the director of Stanford’s AI Lab and now as a chief scientist of Google Cloud, Fei-Fei Li is helping to spur the AI revolution. But it’s a revolution that needs to include more people. She spoke with MIT Technology Review senior editor Will Knight about why everyone benefits if we emphasize the human side of the technology.

Why did you join Google?

Researching cutting-edge AI is very satisfying and rewarding, but we’re seeing this great awakening, a great moment in history. For me it’s very important to think about AI’s impact in the world, and one of the most important missions is to democratize this technology. The cloud is this gigantic computing vehicle that delivers computing services to every single industry.

What have you learned so far?

We need to be much more human-centered.

If you look at where we are in AI, I would say it’s the great triumph of pattern recognition. It is very task-focused, it lacks contextual awareness, and it lacks the kind of flexible learning that humans have.

We also want to make technology that makes humans’ lives better, our world safer, our lives more productive and better. All this requires a layer of human-level communication and collaboration.

When you are making a technology this pervasive and this important for humanity, you want it to carry the values of the entire humanity, and serve the needs of the entire humanity.

If the developers of this technology do not represent all walks of life, it is very likely that this will be a biased technology. I say this as a technologist, a researcher, and a mother. And we need to be speaking about this clearly and loudly.

Source: MIT Technology Review



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

DeepMind Ethics and Society hallmark of a change in attitude

The unit, called DeepMind Ethics and Society, is not the AI Ethics Board that DeepMind was promised when it agreed to be acquired by Google in 2014. That board, which was convened by January 2016, was supposed to oversee all of the company’s AI research, but nothing has been heard of it in the three-and-a-half years since the acquisition. It remains a mystery who is on it, what they discuss, or even whether it has officially met.

DeepMind Ethics and Society is also not the same as DeepMind Health’s Independent Review Panel, a third body set up by the company to provide ethical oversight – in this case, of its specific operations in healthcare.

Nor is the new research unit the Partnership on Artificial Intelligence to Benefit People and Society, an external group founded in part by DeepMind and chaired by the company’s co-founder Mustafa Suleyman. That partnership, which was also co-founded by Facebook, Amazon, IBM and Microsoft, exists to “conduct research, recommend best practices, and publish research under an open licence in areas such as ethics, fairness and inclusivity”.

Nonetheless, its creation is the hallmark of a change in attitude from DeepMind over the past year, which has seen the company reassess its previously closed and secretive outlook. It is still battling a wave of bad publicity started when it partnered with the Royal Free in secret, bringing the app Streams to active use in the London hospital without being open to the public about what data was being shared and how.

The research unit also reflects an urgency on the part of many AI practitioners to get ahead of growing concerns on the part of the public about how the new technology will shape the world around us.

Source: The Guardian



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Why we launched DeepMind Ethics & Society

We believe AI can be of extraordinary benefit to the world, but only if held to the highest ethical standards.

Technology is not value neutral, and technologists must take responsibility for the ethical and social impact of their work.

As history attests, technological innovation in itself is no guarantee of broader social progress. The development of AI creates important and complex questions. Its impact on society—and on all our lives—is not something that should be left to chance. Beneficial outcomes and protections against harms must be actively fought for and built-in from the beginning. But in a field as complex as AI, this is easier said than done.

As scientists developing AI technologies, we have a responsibility to conduct and support open research and investigation into the wider implications of our work. At DeepMind, we start from the premise that all AI applications should remain under meaningful human control, and be used for socially beneficial purposes. 

So today we’re launching a new research unit, DeepMind Ethics & Society, to complement our work in AI science and application. This new unit will help us explore and understand the real-world impacts of AI. It has a dual aim: to help technologists put ethics into practice, and to help society anticipate and direct the impact of AI so that it works for the benefit of all. 

If AI technologies are to serve society, they must be shaped by society’s priorities and concerns.

Source: DeepMind


FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Facebook and Google promote Las Vegas-shooting hoaxes

The missteps underscore how misinformation continues to undermine the credibility of Silicon Valley’s biggest companies.

Accuracy matters in the moments after a tragedy. Facts can help catch the suspects, save lives and prevent a panic.

But in the aftermath of the deadly mass shooting in Las Vegas on Sunday, the world’s two biggest gateways for information, Google and Facebook, did nothing to quell criticism that they amplify fake news when they steer readers toward hoaxes and misinformation gathering momentum on fringe sites.

Google posted under its “top stories” conspiracy-laden links from 4chan — home to some of the internet’s most ardent trolls. It also promoted a now-deleted story from Gateway Pundit and served videos on YouTube of dubious origin.

The posts all had something in common: They identified the wrong assailant.

Facebook’s Crisis Response page, a hub for users to stay informed and mobilize during disasters, perpetuated the same rumors by linking to sites such as Alt-Right News and End Time Headlines, according to Fast Company.

The platforms have immense influence on what gets seen and read. More than two-thirds of Americans report getting at least some of their news from social media, according to the Pew Research Center. A separate global study published by Edelman last year found that more people trusted search engines (63%) for news and information than traditional media such as newspapers and television (58%).

Still, skepticism abounds that the companies beholden to shareholders are equipped to protect the public from misinformation and recognize the threat their platforms pose to democratic societies.

Source: LA Times



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Intelligent Machines Forget Killer Robots—Bias Is the Real AI Danger

John Giannandrea – GETTY

John Giannandrea, who leads AI at Google, is worried about intelligent systems learning human prejudices.

… concerned about the danger that may be lurking inside the machine-learning algorithms used to make millions of decisions every minute.

The real safety question, if you want to call it that, is that if we give these systems biased data, they will be biased

The problem of bias in machine learning is likely to become more significant as the technology spreads to critical areas like medicine and law, and as more people without a deep technical understanding are tasked with deploying it. Some experts warn that algorithmic bias is already pervasive in many industries, and that almost no one is making an effort to identify or correct it.

Karrie Karahalios, a professor of computer science at the University of Illinois, presented research highlighting how tricky it can be to spot bias in even the most commonplace algorithms. Karahalios showed that users don’t generally understand how Facebook filters the posts shown in their news feed. While this might seem innocuous, it is a neat illustration of how difficult it is to interrogate an algorithm.

Facebook’s news feed algorithm can certainly shape the public perception of social interactions and even major news events. Other algorithms may already be subtly distorting the kinds of medical care a person receives, or how they get treated in the criminal justice system.

This is surely a lot more important than killer robots, at least for now.

Source: MIT Technology Review



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Siri as a therapist, Apple is seeking engineers who understand psychology

PL – Looks like Siri needs more help to understand.

Apple Job Opening Ad

“People have serious conversations with Siri. People talk to Siri about all kinds of things, including when they’re having a stressful day or have something serious on their mind. They turn to Siri in emergencies or when they want guidance on living a healthier life. Does improving Siri in these areas pique your interest?

Come work as part of the Siri Domains team and make a difference.

We are looking for people passionate about the power of data and have the skills to transform data to intelligent sources that will take Siri to next level. Someone with a combination of strong programming skills and a true team player who can collaborate with engineers in several technical areas. You will thrive in a fast-paced environment with rapidly changing priorities.”

The challenge as explained by Ephrat Livni on Quartz

The position requires a unique skill set. Basically, the company is looking for a computer scientist who knows algorithms and can write complex code, but also understands human interaction, has compassion, and communicates ably, preferably in more than one language. The role also promises a singular thrill: to “play a part in the next revolution in human-computer interaction.”

The job at Apple has been up since April, so maybe it’s turned out to be a tall order to fill. Still, it shouldn’t be impossible to find people who are interested in making machines more understanding. If it is, we should probably stop asking Siri such serious questions.

Computer scientists developing artificial intelligence have long debated what it means to be human and how to make machines more compassionate. Apart from the technical difficulties, the endeavor raises ethical dilemmas, as noted in the 2012 MIT Press book Robot Ethics: The Ethical and Social Implications of Robotics.

Even if machines could be made to feel for people, it’s not clear what feelings are the right ones to make a great and kind advisor and in what combinations. A sad machine is no good, perhaps, but a real happy machine is problematic, too.

In a chapter on creating compassionate artificial intelligence (pdf), sociologist, bioethicist, and Buddhist monk James Hughes writes:

Programming too high a level of positive emotion in an artificial mind, locking it into a heavenly state of self-gratification, would also deny it the capacity for empathy with other beings’ suffering, and the nagging awareness that there is a better state of mind.

Source: Quartz

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

I prefer to be killed by my own stupidity rather than the codified morals of a software engineer

…or the learned morals of an evolving algorithm. SAS CTO Oliver Schabenberger

With the advent of deep learning, machines are beginning to solve problems in a novel way: by writing the algorithms themselves.

The software developer who codifies a solution through programming logic is replaced by a data scientist who defines and trains a deep neural network.

The expert who studied and learned a domain is replaced by a reinforcement learning algorithm that discovers the rules of play from historical data.

We are learning incredible lessons in this process.

But does the rise of such highly sophisticated deep learning mean that machines will soon surpass their makers? They are surpassing us in reliability, accuracy and throughput. But they are not surpassing us in thinking or learning. Not with today’s technology.

The artificial intelligence systems of today learn from data – they learn only from data. These systems cannot grow beyond the limits of the data by creating, innovating or reasoning.

Even a reinforcement learning system that discovers rules of play from past data cannot develop completely new rules or new games. It can apply the rules in a novel and more efficient way, but it does not invent a new game. The machine that learned to play Go better than any human being does not know how to play Poker.

Where to from here?

True intelligence requires creativity, innovation, intuition, independent problem solving, self-awareness and sentience. The systems built based on deep learning do not – and cannot – have these characteristics. These are trained by top-down supervised methods.

We first tell the machine the ground truth, so that it can discover its regularities. They do not grow beyond that.

Source: InformationWeek



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Can machines learn to be moral?  #AI

AI works, in part, because complex algorithms adeptly identify, remember, and relate data … Moreover, some machines can do what had been the exclusive domain of humans and other intelligent life: Learn on their own.

As a researcher schooled in scientific method and an ethicist immersed in moral decision-making, I know it’s challenging for humans to navigate concurrently the two disparate arenas. 

It’s even harder to envision how computer algorithms can enable machines to act morally.

Moral choice, however, doesn’t ask whether an action will produce an effective outcome; it asks if it is good decision. In other words, regardless of efficacy, is it the right thing to do? 

Such analysis does not reflect an objective, data-driven decision but a subjective, judgment-based one.

Individuals often make moral decisions on the basis of principles like decency, fairness, honesty, and respect. To some extent, people learn those principles through formal study and reflection; however, the primary teacher is life experience, which includes personal practice and observation of others.

Placing manipulative ads before a marginally-qualified and emotionally vulnerable target market may be very effective for the mortgage company, but many people would challenge the promotion’s ethicality.

Humans can make that moral judgment, but how does a data-driven computer draw the same conclusion? Therein lies what should be a chief concern about AI.

Can computers be manufactured with a sense of decency?

Can coding incorporate fairness? Can algorithms learn respect? 

It seems incredible for machines to emulate subjective, moral judgment, but if that potential exists, at least four critical issues must be resolved:

  1. Whose moral standards should be used?
  2. Can machines converse about moral issues?
  3. Can algorithms take context into account?
  4. Who should be accountable?

Source: Business Insider David Hagenbuch



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Why The Sensitive Intersection of Race, Hate Speech And Algorithms Is Heating Up #AI

SAN JOSE, CA – APRIL 18: Facebook CEO Mark Zuckerberg delivers the keynote address at Facebook’s F8 Developer Conference on April 18, 2017 at McEnery Convention Center in San Jose, California. (Photo by Justin Sullivan/Getty Images)

… recent story in The Washington Post reported that “minority” groups feel unfairly censored by social media behemoth Facebook, for example, when using the platform for discussions about racial bias. At the same time, groups and individuals on the other end of the race spectrum are quickly being banned and ousted in a flash from various social media networks.

Most all of such activity begins with an algorithm, a set of computer code that, for all intents and purposes for this piece, is created to raise a red flag when certain speech is used on a site.

But from engineer mindset to tech limitation, just how much faith should we be placing in algorithms when it comes to the very sensitive area of digital speech and race, and what does the future hold?

Indeed, while Facebook head Mark Zuckerberg reportedly eyes political ambitions within an increasingly brown America in which his own company consistently has issues creating racial balance, there are questions around policy and development of such algorithms. In fact, Malkia Cyril executive director for the Center for Media Justice  told the Post  that she believes that Facebook has a double standard when it comes to deleting posts.

Cyril explains [her meeting with Facebook] “The meeting was a good first step, but very little was done in the direct aftermath.  Even then, Facebook executives, largely white, spent a lot of time explaining why they could not do more instead of working with us to improve the user experience for everyone.”

What’s actually in the hearts and minds of those in charge of the software development? How many more who are coding have various thoughts – or more extreme – as those recently expressed in what is now known as the Google Anti-Diversity memo?

Not just Facebook, but any and all tech platforms where race discussion occurs are seemingly at a crossroads and under various scrutiny in terms of management, standards and policy about this sensitive area. The main question is how much of this imbalance is deliberate and how much is just a result of how algorithms naturally work?

Nelson [National Chairperson National Society of Black Engineers] notes that the first source of error, however, is how a particular team defines the term hate speech. “That opinion may differ between people so any algorithm would include error at the individual level,” he concludes.

“I believe there are good people at Facebook who want to see justice done,” says Cyril. “There are steps being taken at the company to improve the experience of users and address the rising tide of hate that thwarts democracy, on social media and in real life.

That said, racism is not race neutral, and accountability for racism will never come from an algorithm alone.”

Source: Forbes



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Behind the Google diversity memo furor is fear of Google’s vast opaque power

Fear of opaque power of Google in particular, and Silicon Valley in general, wields over our lives.

If Google — and the tech world more generally — is sexist, or in the grips of a totalitarian cult of political correctness, or a secret hotbed of alt-right reactionaries, the consequences would be profound.

Google wields a monopoly over search, one of the central technologies of our age, and, alongside Facebook, dominates the internet advertising market, making it a powerful driver of both consumer opinion and the media landscape. 

It shapes the world in which we live in ways both obvious and opaque.

This is why trust matters so much in tech. It’s why Google, to attain its current status in society, had to promise, again and again, that it wouldn’t be evil. 

Compounding the problem is that the tech industry’s point of view is embedded deep in the product, not announced on the packaging. Its biases are quietly built into algorithms, reflected in platform rules, expressed in code few of us can understand and fewer of us will ever read.

But what if it actually is evil? Or what if it’s not evil but just immature, unreflective, and uncompassionate? And what if that’s the culture that designs the digital services the rest of us have to use?

The technology industry’s power is vast, and the way that power is expressed is opaque, so the only real assurance you can have that your interests and needs are being considered is to be in the room when the decisions are made and the code is written. But tech as an industry is unrepresentative of the people it serves and unaccountable in the way it serves them, and so there’s very little confidence among any group that the people in the room are the right ones.

Source: Vox (read the entire article by Ezra Klein)



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Will Satya’s ‘Charlottesville email’ shape AI applications at Microsoft?


“You can’t paint what you ain’t.”

– Drew Struzan

Those words got to me 18 years ago during an interview I had with this esteemed artist. We were working on a project together, an interactive CD about his movie posters, several of which were classics by then, when the conversation wandered off the subject of art and we began to examine the importance of being true to one’s self.  

“Have you ever, in your classes or seminars talked much about the underlying core foundation principles of your life?” I asked Drew that day.

His answer in part went like this: “Whenever I talk, I’m asked to talk about my art, because that’s what they see, that’s what’s out front. But the power of the art comes out of the personality of the human being. Inevitably, you can’t paint what you ain’t.”

That conversation between us took place five days before Columbine, in April of 1999, when Pam and I lived in Denver and a friend of ours had children attending that school. That horrific event triggered a lot of value discussions and a lot of human actions, in response to it.

Flash-forward to Charlottesville. And an email, in response to it, that the CEO of a large tech company sent his employees yesterday, putting a stake in the ground about what his company stands for, and won’t stand for, during these “horrific” times.

“… At Microsoft, we strive to seek out differences, celebrate them and invite them in. As a leader, a key part of your role is creating a culture where every person can do their best work, which requires more than tolerance for diverse perspectives. Our growth mindset culture requires us to truly understand and share the feelings of another person. …”

If Satya Nadella’s email expresses the emerging personality at Microsoft, the power source from which it works, then we are cautiously optimistic about what this could do for socializing AI.

It will take this kind of foundation-building, going forward, as MS introduces more AI innovations, to diminish the inherent bias in deep learning approaches and the implicit bias in algorithms.

It will take this depth of awareness to shape the values of Human-AI collaboration, to protect the humans who use AI. Values that, “seek out differences, celebrate them and invite them in.”

It will require unwavering dedication to this goal. Because. You can’t paint what you ain’t.

Blogger, Phil Lawson
SocializingAI.com



FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Satya Nadella’s message to Microsoft after the attack in Charlottesville

Yesterday (Aug. 14), Microsoft CEO Satya Nadella sent out the following email to employees at Microsoft after the deadly car crash at a white nationalist rally in in Charlottesville, Virginia, on Saturday, Aug. 12:

This past week and in particular this weekend’s events in Charlottesville have been horrific. What I’ve seen and read has had a profound impact on me and I am sure for many of you as well. In these times, to me only two things really matter as a leader.

The first is that we stand for our timeless values, which include diversity and inclusion. There is no place in our society for the bias, bigotry and senseless violence we witnessed this weekend in Virginia provoked by white nationalists. Our hearts go out to the families and everyone impacted by the Charlottesville tragedy.

The second is that we empathize with the hurt happening around us. At Microsoft, we strive to seek out differences, celebrate them and invite them in. As a leader, a key part of your role is creating a culture where every person can do their best work, which requires more than tolerance for diverse perspectives. Our growth mindset culture requires us to truly understand and share the feelings of another person. It is an especially important time to continue to be connected with people, and listen and learn from each other’s experiences.

As I’ve said, across Microsoft, we will stand together with those who are standing for positive change in the communities where we live, work and serve. Together, we must embrace our shared humanity, and aspire to create a society that is filled with respect, empathy and opportunity for all.

Feel free to share with your teams.

Satya

Source: Quartz

TO READ this blogger’s view of the above email click here.

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Do we still need human judges in the age of Artificial Intelligence?

Technology and the law are converging, and where they meet new questions arise about the relative roles of artificial and human agents—and the ethical issues involved in the shift from one to the other. While legal technology has largely focused on the activities of the bar, it challenges us to think about its application to the bench as well. In particular,

Could AI replace human judges?

The idea of  AI judges raises important ethical issues around bias and autonomy. AI programs may incorporate the biases of their programmers and the humans they interact with.

But while such programs may replicate existing human biases, the distinguishing feature of AI over an algorithm  is that it can behave in surprising and unintended ways as it ‘learns.’ Eradicating bias therefore becomes even more difficult, though not impossible. Any AI judging program would need to account for, and be tested for, these biases.

Appealing to rationality, the counter-argument is that human judges are already biased, and that AI can be used to improve the way we deal with them and reduce our ignorance. Yet suspicions about AI judges remain, and are already enough of a concern to lead the European Union to promulgate a General Data Protection Regulation which becomes effective in 2018. This Regulation contains

“the right not to be subject to a decision based solely on automated processing”.

As the English utilitarian legal theorist Jeremy Bentham once wrote in An Introduction To The Principles of Morals and Legislation, “in principle and in practice, in a right track and in a wrong one, the rarest of all human qualities is consistency.” With the ability to process far more data and variables in the case record than humans could ever do, an AI judge might be able to outstrip a human one in many cases.

Even so, AI judges may not solve classical questions of legal validity so much as raise new questions about the role of humans, since—if  we believe that ethics and morality in the law are important—then they necessarily lie, or ought to lie, in the domain of human judgment.

In practical terms, if we apply this conclusion to the perspective of American legal theorist Ronald Dworkin, for example, AI could assist with examining the entire breadth and depth of the law, but humans would ultimately choose what they consider a morally-superior interpretation.

The American Judge Richard Posner believes that the immediate use of AI and automation should be restricted to assisting judges in uncovering their own biases and maintaining consistency.

At the heart of these issues is a hugely challenging question: what does it mean to be human in the age of Artificial Intelligence?

Source: Open Democracy

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Why We Should Fear Emotionally Manipulative Robots – #AI

Artificial Intelligence Is Learning How to Exploit Human Psychology for Profit

Empathy is widely praised as a good thing. But it also has its dark sides: Empathy can be manipulated and it leads people to unthinkingly take sides in conflicts. Add robots to this mix, and the potential for things to go wrong multiplies.

Give robots the capacity to appear empathetic, and the potential for trouble is even greater.

The robot may appeal to you, a supposedly neutral third party, to help it to persuade the frustrated customer to accept the charge. It might say: “Please trust me, sir. I am a robot and programmed not to lie.”

You might be skeptical that humans would empathize with a robot. Social robotics has already begun to explore this question. And experiments suggest that children will side with robots against people when they perceive that the robots are being mistreated.

a study conducted at Harvard demonstrated that students were willing to help a robot enter secured residential areas simply because it asked to be let in, raising questions about the potential dangers posed by the human tendency to respect a request from a machine that needs help.

Robots will provoke empathy in situations of conflict. They will draw humans to their side and will learn to pick up on the signals that work.

Bystander support will then mean that robots can accomplish what they are programmed to accomplish—whether that is calming down customers, or redirecting attention, or marketing products, or isolating competitors. Or selling propaganda and manipulating opinions.

The robots will not shed tears, but may use various strategies to make the other (human) side appear overtly emotional and irrational. This may also include deliberately infuriating the other side.

When people imagine empathy by machines, they often think about selfless robot nurses and robot suicide helplines, or perhaps also robot sex. In all of these, machines seem to be in the service of the human. However, the hidden aspects of robot empathy are the commercial interests that will drive its development. Whose interests will dominate when learning machines can outwit not only their customers but also their owners?

Source: Zocalo

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Artificial intelligence ethics the same as other new technology – #AI

AI gives us the power to solve problems more efficiently and effectively.

Just as a calculator is more efficient at math than a human, various forms of AI might be better than humans at other tasks. For example, most car accidents are caused by human error – what if driving could be automated and human error thus removed? Tens of thousands of lives might be saved every year, and huge sums of money saved in healthcare costs and property damage averted.

Moving into the future, AI might be able to better personalize education to individual students, just as adaptive testing evaluates students today. AI might help figure out how to increase energy efficiency and thus save money and protect the environment. It might increase efficiency and prediction in healthcare; improving health while saving money. Perhaps AI could even figure out how to improve law and government, or improve moral education. For every problem that needs a solution, AI might help us find it.

But as human beings, we should not be so much thinking about efficiency as morality.

Doing the right thing is sometimes “inefficient” (whatever efficiency might mean in a certain context). Respecting human dignity is sometimes inefficient. And yet we should do the right thing and respect human dignity anyway, because those moral values are higher than mere efficiency.

Ultimately, AI gives us just what all technology does – better tools for achieving what we want.

The deeper question then becomes “what do we want?” and even more so “what should we want?” If we want evil, then evil we shall have, with great efficiency and abundance. If instead we want goodness, then through diligent pursuit we might be able to achieve it.

Source: Crux

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

The big problem with artificial intelligence

Artificial intelligence algorithms can indeed create a world that distributes resources more efficiently and, in theory, can offer more for everyone.

Yes, but: If we aren’t careful, these same algorithms could actually lead to greater discrimination by codifying the biases that exist both overtly and unconsciously in human society.

What’s more, the power to make these decisions lies in the hands of Silicon Valley, which has a decidedly mixed record on spotting and addressing diversity issues in its midst.

Airbnb’s Mike Curtis put it well when I interviewed him this week at VentureBeat’s MobileBeat conference:

 One of the best ways to combat bias is to be aware of it. When you are aware of the biases then you can be proactive about getting in front of them. Well, computers don’t have that advantage. They can’t be aware of the biases that may have come into them from the data patterns they have seen.”

Concern is growing:

  • The ACLU has raised concerns that age, sex, and race biases are already being codified into the algorithms that power AI.
  • ProPublica found that a computer program used in various regions to decide whom to grant parole would go easy on white offenders while being unduly harsh to black ones.
  • It’s an issue that Weapons of Math Destruction author Cathy O’Neil raised in a popular talk at the TED conference this year. “Algorithms don’t make things fair,” she said. “They automate the status quo.”

Source: Axios

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Microsoft is forming a grand army of experts in the #AI wars with Google, Facebook, and Amazon

Microsoft announces the creation of Microsoft Research AI, a dedicated unit within its global Microsoft Research division that will focus exclusively on how to make the company’s software smarter, now and in the future.

The difference now, Microsoft Research Labs director Eric Horvitz tells Business Insider, is that this new organization will bring roughly 100 of those experts under one figurative roof. By bringing them together, Microsoft’s AI team can do more, faster.

Horvitz describes the formation of Microsoft Research AI as a “key strategic effort;’ a move that is “absolutely critical” as artificial intelligence becomes increasingly important to the future of technology.

Artificial intelligence carries a lot of power, and a lot of responsibility.

That’s why Microsoft has also announced the formation of Aether (AI and ethics in engineering and research), a board of executives drawn from across every division of the company, including lawyers. The idea, says Horvitz, is to spot issues and potential abuses of AI before they start.

Similarly, Microsoft’s AI design guide is designed to help engineers build systems that augment what humans can do, without making them feel obsolete. Otherwise, people might start to feel like machines are piloting them, rather than the other way around. That’s why it’s so key that apps like Cortana feel warm and relatable.

“Oh my goodness, those computers better talk to us in a way that’s friendly and approachable,” says Microsoft General Manager Emma Williams, in charge of the group behind the design guide. “As people, we have the control.”

Source: Business Insider

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Tech Giants Grapple with the Ethical Concerns Raised by the #AI Boom

“We’re here at an inflection point for AI. We have an ethical imperative to harness AI to protect and preserve over time.” Eric Horvitz, managing director of Microsoft Research

2017 EmTech panel discussion

One shared concern was that recent advances are leading companies to put software in positions with very direct control over humans—for example in health care.

Francesca Rossi, a researcher at IBM, gave the example of a machine providing assistance or companionship to elderly people. “This robot will have to follow cultural norms that are culture-specific and task-specific,” she said. “[And] if you were to deploy in the U.S. or Japan, that behavior would have to be very different.”

In the past year, many efforts to research the ethical challenges of machine learning and AI have sprung up in academia and industry. The University of California, Berkeley; Harvard; and the Universities of Oxford and Cambridge have all started programs or institutes to work on ethics and safety in AI. In 2016, Amazon, Microsoft, Google, IBM, and Facebook jointly founded a nonprofit called Partnership on AI to work on the problem (Apple joined in January).

Companies are also taking individual action to build safeguards around their technology.

  • Gupta highlighted research at Google that is testing ways to correct biased machine-learning models, or prevent them from becoming skewed in the first place.
  • Horvitz described Microsoft’s internal ethics board for AI, dubbed AETHER, which considers things like new decision algorithms developed for the company’s in-cloud services. Although currently populated with Microsoft employees, in future the company hopes to add outside voices as well.
  • Google has started its own AI ethics board.

Technology Review

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Will Using AI To Make Loans Trade One Kind Of Bias For Another?

Digital lending is expected to double in size over the next three years, reaching nearly 10 percent of all loans in the U.S. and Europe.

Marc Stein, who runs Underwrite.AI, writes algorithms capable of teaching themselves.

The program learns from each correlation it finds, whether it’s determining someone’s favorite books or if they are lying about their income on a loan application. And using that information, it can predict whether the applicant is a good risk.

Digital lenders are pulling in all kinds of data, including purchases, SAT scores and public records like fishing licenses.

If we looked at the delta between what people said they made and what we could verify, that was highly predictive,” Stein says.

As part of the loan application process, some lenders have prospective borrowers download an app that uploads an extraordinary amount of information like daily location patterns, the punctuation of text messages or how many of their contacts have last names

“FICO and income, which are sort of the sweet spot of what every consumer lender in the United States uses, actually themselves are quite biased against people,” says Dave Girouard, the CEO of Upstart, an online lender.

Government research has found that FICO scores hurt younger borrowers and those from foreign counties because people with low incomes are targeted for higher-interest loans. Girouard argues that new, smarter data can make lending more fair.

Source: NPR

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Tech Reckons With the Problems It Helped Create

Festival goer is seen at the 2017 SXSW Conference and Festivals in Austin, Texas.

SXSW’s – this year, the conference itself feels a lot like a hangover.

It’s as if the coastal elites who attend each year finally woke up with a serious case of the Sunday scaries, realizing that the many apps, platforms, and doodads SXSW has launched and glorified over the years haven’t really made the world a better place. In fact, they’ve often come with wildly destructive and dangerous side effects. Sure, it all seemed like a good idea in 2013!

But now the party’s over. It’s time for the regret-filled cleanup.

speakers related how the very platforms that were meant to promote a marketplace of ideas online have become filthy junkyards of harassment and disinformation.

Yasmin Green, who leads an incubator within Alphabet called Jigsaw, focused her remarks on the rise of fake news, and even brought two propaganda publishers with her on stage to explain how, and why, they do what they do. For Jestin Coler, founder of the phony Denver Guardian, it was an all too easy way to turn a profit during the election.

“To be honest, my mortgage was due,” Coler said of what inspired him to write a bogus article claiming an FBI agent related to Hillary Clinton’s email investigation was found dead in a murder-suicide. That post was shared some 500,000 times just days before the election.

While prior years’ panels may have optimistically offered up more tech as the answer to what ails tech, this year was decidedly short on solutions.

There seemed to be, throughout the conference, a keen awareness of the limits human beings ought to place on the software that is very much eating the world.

Source: Wired

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Technology is the main driver of the recent increases in inequality

Artificial Intelligence And Income Inequality

While economists debate the extent to which technology plays a role in global inequality, most agree that tech advances have exacerbated the problem.

Economist Erik Brynjolfsson said,

“My reading of the data is that technology is the main driver of the recent increases in inequality. It’s the biggest factor.”

AI expert Yoshua Bengio suggests that equality and ensuring a shared benefit from AI could be pivotal in the development of safe artificial intelligence. Bengio, a professor at the University of Montreal, explains, “In a society where there’s a lot of violence, a lot of inequality, [then] the risk of misusing AI or having people use it irresponsibly in general is much greater. Making AI beneficial for all is very central to the safety question.”

“It’s almost a moral principle that we should share benefits among more people in society,” argued Bart Selman, a professor at Cornell University … “So we have to go into a mode where we are first educating the people about what’s causing this inequality and acknowledging that technology is part of that cost, and then society has to decide how to proceed.”

Source: HuffPost

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Artificial intelligence is ripe for abuse

Microsoft’s Kate Crawford tells SXSW that society must prepare for authoritarian movements to test the ‘power without accountability’ of AI

As artificial intelligence becomes more powerful, people need to make sure it’s not used by authoritarian regimes to centralize power and target certain populations, Microsoft Research’s Kate Crawford warned on Sunday.

“We want to make these systems as ethical as possible and free from unseen biases.”

In her SXSW session, titled Dark Days: AI and the Rise of Fascism, Crawford, who studies the social impact of machine learning and large-scale data systems, explained ways that automated systems and their encoded biases can be misused, particularly when they fall into the wrong hands.

“Just as we are seeing a step function increase in the spread of AI, something else is happening: the rise of ultra-nationalism, rightwing authoritarianism and fascism,” she said.

One of the key problems with artificial intelligence is that it is often invisibly coded with human biases.

We should always be suspicious when machine learning systems are described as free from bias if it’s been trained on human-generated data,” Crawford said. “Our biases are built into that training data.””

Source: The Gaurdian

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Will Democracy Survive Big Data and Artificial Intelligence?


We are in the middle of a technological upheaval that will transform the way society is organized. We must make the right decisions now.

In 2016 we produced as much data as in the entire history of humankind through 2015.

It is estimated that in 10 years’ time there will be 150 billion networked measuring sensors, 20 times more than people on Earth. Then, the amount of data will double every 12 hours.

One thing is clear: the way in which we organize the economy and society will change fundamentally. We are experiencing the largest transformation since the end of the Second World War; after the automation of production and the creation of self-driving cars the automation of society is next.

Everything will become intelligent; soon we will not only have smart phones, but also smart homes, smart factories and smart cities. Should we also expect these developments to result in smart nations and a smarter planet?

The field of artificial intelligence is, indeed, making breathtaking advances. Artificial intelligence is no longer programmed line by line, but is now capable of learning, thereby continuously developing itself.

Under the label of “nudging,” and on massive scale, governments are trying to steer citizens towards healthier or more environmentally friendly behaviour by means of a “nudge”—a modern form of paternalism.

The new, caring government is not only interested in what we do, but also wants to make sure that we do the things that it considers to be right. The magic phrase is “big nudging”, which is the combination of big data with nudging.

In a rapidly changing world a super-intelligence can never make perfect decisions (see Fig. 1): systemic complexity is increasing faster than data volumes, which are growing faster than the ability to process them, and data transfer rates are limited.
Furthermore, there is a danger that the manipulation of decisions by powerful algorithms undermines the basis of “collective intelligence,” which can flexibly adapt to the challenges of our complex world. For collective intelligence to work, information searches and decision-making by individuals must occur independently. If our judgments and decisions are predetermined by algorithms, however, this truly leads to a brainwashing of the people. Intelligent beings are downgraded to mere receivers of commands, who automatically respond to stimuli.

We are now at a crossroads. Big data, artificial intelligence, cybernetics and behavioral economics are shaping our society—for better or worse.

We are at the historic moment, where we have to decide on the right path—a path that allows us all to benefit from the digital revolution.

Source: Scientific American

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

So long, banana-condom demos: Sex and drug education could soon come from chatbots

“Is it ok to get drunk while I’m high on ecstasy?” “How can I give oral sex without getting herpes?” Few teenagers would ask mom or dad these questions—even though their life could quite literally depend on it.

Talking to a chatbot is a different story. They never raise an eyebrow. They will never spill the beans to your parents. They have no opinion on your sex life or drug use. But that doesn’t mean they can’t take care of you.

Bots can be used as more than automated middlemen in business transactions: They can meet needs for emotional human intervention when there aren’t enough humans who are willing or able to go around.

In fact, there are times when the emotional support of a bot may even be preferable to that of a human.

In 2016, AI tech startup X2AI built a psychotherapy bot capable of adjusting its responses based on the emotional state of its patients. The bot, Karim, is designed to help grief- and PTSD-stricken Syrian refugees, for whom the demand (and price) of therapy vastly overwhelms the supply of qualified therapists.

From X2AI test runs using the bot with Syrians, they noticed that technologies like Karim offer something humans cannot:

For those in need of counseling but concerned with the social stigma of seeking help, a bot can be comfortingly objective and non-judgmental.

Bzz is a Dutch chatbot created precisely to answer questions about drugs and sex. When surveyed teens were asked to compare Bzz to finding answers online or calling a hotline, Bzz won. Teens could get their answers faster with Bzz than searching on their own, and they saw their conversations with the bot as more confidential because no human was involved and no tell-tale evidence was left in a search history.

Because chatbots can efficiently gain trust and convince people to confide personal and illicit information in them, the ethical obligations of such bots are critical, but still ambiguous.

Source: Quartz

 

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Wikipedia bots act more like humans than expected

‘Benevolent bots’ or software robots designed to improve articles on Wikipedia sometimes have online ‘fights’ over content that can continue for years, say scientists who warn that artificial intelligence systems may behave more like humans than expected.

They found that bots interacted with one another, whether or not this was by design, and it led to unpredictable consequences.

Researchers said that bots are more like humans than you might expect. Bots appear to behave differently in culturally distinct online environments.

The findings are a warning to those using artificial intelligence for building autonomous vehicles, cyber security systems or for managing social media.

We may have to devote more attention to bots’ diverse social life and their different cultures, researchers said.

The research found that although the online world has become an ecosystem of bots, our knowledge of how they interact with each other is still rather poor.

Although bots are automatons that do not have the capacity for emotions, bot to bot interactions are unpredictable and act in distinctive ways.

Researchers found that German editions of Wikipedia had fewest conflicts between bots, with each undoing another’s edits 24 times, on average, over ten years.

This shows relative efficiency, when compared with bots on the Portuguese Wikipedia edition, which undid another bot’s edits 185 times, on average, over ten years, researchers said.

Bots on English Wikipedia undid another bot’s work 105 times, on average, over ten years, three times the rate of human reverts, they said.

The findings show that even simple autonomous algorithms can produce complex interactions that result in unintended consequences – ‘sterile fights’ that may continue for years, or reach deadlock in some cases.

“We find that bots behave differently in different cultural environments and their conflicts are also very different to the ones between human editors,” said Milena Tsvetkova, from the Oxford Internet Institute.

“This has implications not only for how we design artificial agents but also for how we study them. We need more research into the sociology of bots,” said Tsvetkova.

Source: The Statesman

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Microsoft Ventures: Making the long bet on AI + people

Another significant commitment by Microsoft to democratize AI:

a new Microsoft Ventures fund for investment in AI companies focused on inclusive growth and positive impact on society.

Companies in this fund will help people and machines work together to increase access to education, teach new skills and create jobs, enhance the capabilities of existing workforces and improve the treatment of diseases, to name just a few examples.

CEO Satya Nadella outlined principles and goals for AI: AI must be designed to assist humanity; be transparent; maximize efficiency without destroying human dignity; provide intelligent privacy and accountability for the unexpected; and be guarded against biases. These principles guide us as we move forward with this fund.

Source: Microsoft blog

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

Teaching an Algorithm to Understand Right and Wrong

hbr-ai-morals

Aristotle states that it is a fact that “all knowledge and every pursuit aims at some good,” but then continues, “What then do we mean by the good?” That, in essence, encapsulates the ethical dilemma.

We all agree that we should be good and just, but it’s much harder to decide what that entails.

“We need to decide to what extent the legal principles that we use to regulate humans can be used for machines. There is a great potential for machines to alert us to bias. We need to not only train our algorithms but also be open to the possibility that they can teach us about ourselves.” – Francesca Rossi, an AI researcher at IBM

Since Aristotle’s time, the questions he raised have been continually discussed and debated. 

Today, as we enter a “cognitive era” of thinking machines, the problem of what should guide our actions is gaining newfound importance. If we find it so difficult to denote the principles by which a person should act justly and wisely, then how are we to encode them within the artificial intelligences we are creating? It is a question that we need to come up with answers for soon.

Cultural Norms vs. Moral Values

Another issue that we will have to contend with is that we will have to decide not only what ethical principles to encode in artificial intelligences but also how they are coded. As noted above, for the most part, “Thou shalt not kill” is a strict principle. Other than a few rare cases, such as the Secret Service or a soldier, it’s more like a preference that is greatly affected by context.

What makes one thing a moral value and another a cultural norm? Well, that’s a tough question for even the most-lauded human ethicists, but we will need to code those decisions into our algorithms. In some cases, there will be strict principles; in others, merely preferences based on context. For some tasks, algorithms will need to be coded differently according to what jurisdiction they operate in.

Setting a Higher Standard

Most AI experts I’ve spoken to think that we will need to set higher moral standards for artificial intelligences than we do for humans.

Major industry players, such as Google, IBM, Amazon, and Facebook, recently set up a partnership to create an open platform between leading AI companies and stakeholders in academia, government, and industry to advance understanding and promote best practices. Yet that is merely a starting point.

Source: Harvard Business Review

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

The Christianizing of AI

Bloggers note: The following post illustrates the challenge in creating ethics for AI. There are many different faiths, with different belief systems. How would the AI be programmed to serve these diverse ethical needs? 

The ethics of artificial intelligence (AI) has drawn comments from the White House and British House of Commons in recent weeks, along with a nonprofit organization established by Amazon, Google, Facebook, IBM and Microsoft. Now, Baptist computer scientists have called Christians to join the discussion.

Louise Perkins, professor of computer science at California Baptist University, told Baptist Press she is “quite worried” at the lack of an ethical code related to AI. The Christian worldview, she added, has much to say about how automated devices should be programmed to safeguard human flourishing.

Individuals with a Christian worldview need to be involved in designing and programing AI systems, Perkins said, to help prevent those systems from behaving in ways that violate the Bible’s ethical standards.

Believers can thus employ “the mathematics or the logic we will be using to program these devices” to “infuse” a biblical worldview “into an [AI] system.” 

Perkins also noted that ethical standards will have to be programmed into AI systems involved in surgery and warfare among other applications. A robot performing surgery on a pregnant woman, for instance, could have to weigh the life of the baby relative to the life of the mother, and an AI weapon system could have to apply standards of just warfare.

Source: The Pathway

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail

12 Observations About Artificial Intelligence From The O’Reilly AI Conference

12-observations-ai-forbesBloggers: Here’s a few excepts from a long but very informative review. (The best may be last.)

The conference was organized by Ben Lorica and Roger Chen with Peter Norvig and Tim O-Reilly acting as honorary program chairs.   

For a machine to act in an intelligent way, said [Yann] LeCun, it needs “to have a copy of the world and its objective function in such a way that it can roll out a sequence of actions and predict their impact on the world.” To do this, machines need to understand how the world works, learn a large amount of background knowledge, perceive the state of the world at any given moment, and be able to reason and plan.

Peter Norvig explained the reasons why machine learning is more difficult than traditional software: “Lack of clear abstraction barriers”—debugging is harder because it’s difficult to isolate a bug; “non-modularity”—if you change anything, you end up changing everything; “nonstationarity”—the need to account for new data; “whose data is this?”—issues around privacy, security, and fairness; lack of adequate tools and processes—exiting ones were developed for traditional software.

AI must consider culture and context—“training shapes learning”

“Many of the current algorithms have already built in them a country and a culture,” said Genevieve Bell, Intel Fellow and Director of Interaction and Experience Research at Intel. As today’s smart machines are (still) created and used only by humans, culture and context are important factors to consider in their development.

Both Rana El Kaliouby (CEO of Affectiva, a startup developing emotion-aware AI) and Aparna Chennapragada (Director of Product Management at Google) stressed the importance of using diverse training data—if you want your smart machine to work everywhere on the planet it must be attuned to cultural norms.

“Training shapes learning—the training data you put in determines what you get out,” said Chennapragada. And it’s not just culture that matters, but also context

The £10 million Leverhulme Centre for the Future of Intelligence will explore “the opportunities and challenges of this potentially epoch-making technological development,” namely AI. According to The Guardian, Stephen Hawking said at the opening of the Centre,

“We spend a great deal of time studying history, which, let’s face it, is mostly the history of stupidity. So it’s a welcome change that people are studying instead the future of intelligence.”

Gary Marcus, professor of psychology and neural science at New York University and cofounder and CEO of Geometric Intelligence,

 “a lot of smart people are convinced that deep learning is almost magical—I’m not one of them …  A better ladder does not necessarily get you to the moon.”

Tom Davenport added, at the conference: “Deep learning is not profound learning.”

AI changes how we interact with computers—and it needs a dose of empathy

AI continues to be possibly hampered by a futile search for human-level intelligence while locked into a materialist paradigm

Maybe, just maybe, our minds are not computers and computers do not resemble our brains?  And maybe, just maybe, if we finally abandon the futile pursuit of replicating “human-level AI” in computers, we will find many additional–albeit “narrow”–applications of computers to enrich and improve our lives?

Gary Marcus complained about research papers presented at the Neural Information Processing Systems (NIPS) conference, saying that they are like alchemy, adding a layer or two to a neural network, “a little fiddle here or there.” Instead, he suggested “a richer base of instruction set of basic computations,” arguing that “it’s time for genuinely new ideas.”

Is it possible that this paradigm—and the driving ambition at its core to play God and develop human-like machines—has led to the infamous “AI Winter”? And that continuing to adhere to it and refusing to consider “genuinely new ideas,” out-of-the-dominant-paradigm ideas, will lead to yet another AI Winter?

 Source: Forbes

FacebooktwitterredditpinterestlinkedinmailFacebooktwitterredditpinterestlinkedinmail